THE BOUNDARIES OF THE EFFECTIVE ELASTIC MODULI
FOR INHOMOGENEOUS SOLIDS

A. G. Fokin and T. D. Shermergor

The calculation of the effective elastic moduli of inhomogeneous solids, which connect
the stresses and strains averaged for the material, is accompanied by certain mathematical
difficulties owing to correlation relationships of arbitrary orders. Neglect of correla-
tion relationships leads to average elastic moduli, where averaging according to Voigt
and Reuss establishes boundaries containing the effective elastic moduli [1]. Approxi-
mate values of the latter can be found by taking into account the correlation relationships
of the second order in both calculation schemes [2, 3]}. Another method of evaluating
the true moduli consists of narrowing the boundaries of Voigt and Reuss on the basis of
model representations [4-6]. The approximate effective elastic moduli for a series of
polycrystals with various common-angle values are presented in [7]. An analysis of

the effect of the correlation relationships between the grains of a mechanical mixture

of isotropic components on the effective elastic moduli is carried out in [8], although

in all the papers just mentioned the use of correlative corrections to narrow the range
of elastic moduli is not investigated.* Below it is shown that the calculation of the
correlation corrections in the second approximation allows the range for the effective
moduli to be narrowed.

1. We consider an inhomogeneous solid which can be either a polycrystal or a solid mechanical mix-
ture of isotropic components. We assume that the boundaries separating the components exclude the sliding
of the grains relative to one another. Then the elastic field of the deformed material can be described by
a system of equations, including the equations of equilibrium, compatibility, and Hooke's law. The ex-
plicit form of these equations, in the presence of internal and external stresses, is given, for example,
in [9]. Below,the unified matrix form is used for equations of equilibrium and compatibility

LZ +F =0, 1.1)
where the operator and the function in the equations of equilibrium have the form
L= VihisinV, Z;=u;, F;=Ff. (1.2)

*In [3] it was proposed that the scheme of Reuss be used for the calculation of the correlative cor-
rections. Although the formulas introduced in this investigation are correct, the statement that the second
approximation of the schemes of Voigt and Reuss (consideration of binary correlations) provides the upper
and lower limits is incorrect. In reality the upper and lower limits are provided by the first and, as is
shown below, the third approximations of the method, while the effective moduli calculated in the second
approximation of the schemes of Voigt and Reuss lie on the same side of their true values.
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In the equations of compatibility, respectively, we have

Ly = :p2Ckrs YV pVrSqsims  Lim = Otms Fi = M. (1.3)

HereAjkim and Sgqlm are, respectively, the tensors of the elastic moduli and flexibilities; uj and fj
are the vectors of displacements and density of the body forces; o1y and nji are the tensors of the stresses
and displacements; eipg is the antisymmetric unit tensor.

By dividing the operators and functioné into regular and random components and from Eq. (1.1), we
find that

(LXZ> + <L'Z'5 + F = 0, 1.4

where the angular brackets are used to denote averaging. The averaging is carried out over a region of
dimensions small in comparison to the distance over which the regular part of the functions varies signi-
ficantly, but large in comparison to the space scale of correlation. Expressing the random component
Z' in terms of the regular component < Z> by means of a certain integral operator Q'

7t = QI KZ>

(1.5)
we rewrite Eq. (1.4) in the form
L¥<Zy - F =0, L*=<L+<L'QD. (1.86)
The explicit expression of the operator Q' has the form [10]
Q= X + (X2 — (X%) - (X3 — XX» — X¥) +
(Xt — XX — XX3) — (X% + (XBHB) .., 1.7
Here X is used to denote the operator M*L', where M* is given by the equation
KLyM* + I = 0. 1.8)

Here the unit matrix Tin the second order has the components 6;5, while in the fourth order it has
the components 8i(pSq);j» where symmetrication is carried out with respect to the subscripts enclosed by
the round brackets. The kernel of the integral operator M* is the Green function G of the operator <L >:

M8 (x) = G (x). (1.9)

The explicit form of the Green functions for the equations of equilibrium and compatibility is given
by the expressions [11, 12]

G () = Gurpp— i, w= R, (1.10)
t .
Gittm )= gy | — = WOV — 801V — 81 Vi71) +
+ 28110('287:) mqV}fVle r— m ViVLVZVmﬂ} , (1 J11)

where », 4, 8, and g are used to denote the elastic constants averaged over the aggregate -

Chirtmd = MirSim + 218; (zam) ke (1.12)

<Sigam> = s0i3.81m + 248,16y, (1.13)
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The operator L* determines the renormalized equations of equilibrium and compatibility. Substi-
tuting into (1.6) the definitions of the original operator L, we find

Lil* = vkxik;mvm7 Lih‘?m = eipqekrsvpvrsqs:m. (1.14)
*

whereAikim and qufm are the effective tensors of the elastic constants and flexibilities, giving the rela-

tionship between the average tensors of stresses and strains according to Hooke's law

Gird = hitim <€y ik = Sikim {Sim) - (1.15)

In [7] the effective tensors of the elastic moduli and flexibilities were calculated in the second approx-
imation obtained from (1.6), (1.7), and (1.14) with the condition that Q'=X

}“ik;n = <}"ih‘lm> + <7"ik;7qurqu7\rrs;m>v (1,, 16)

* ’ ] ’ N
Sitim = {Sirxim) + <SikpqevurenjsMpqvn, wiSrstm)e (1017)

2. We show that (1.16) and (1.17) do not give a range containing the exact value of the effective
elastic moduli or flexibilities. For this we consider the model of an inhomogeneous medium formed from
a mixture of isotropic components for which the shear moduli coincide. For such a medium the series
(1.7) can be summed [8], giving

Dy

K=K — 1Kz 4 co Ky 4ol

p* =y, Dg = (K2, (2.1}

Equations (2.1) are obtained by using either the scheme of Voigt or the schemeof Reuss. The coin-
cidence of the results is a consequence of the fact that both schemes lead to the exact value of the effective
elastic moduli.

To establish the relations between the exact values of the effective elastic moduli and their approxi-
mate values, in the schemes of Voigt and Reuss we draw attention fo the fact that one of the expansion
series for the effective elastic moduli or the flexibilities is of constant sign, while the other is of alter-
nating sign. Indeed, for the model of an inhomogeneous medium under consideration, the operator Q' can
be represented in the schemes of Voigt and Reuss, respectively, by the following expressions:

0 = 4= Vi sa'Vj, o =2’ DB (2.2)
0
o
.1 1 AT , ST
Qi = 5 <5ij + = ViV —,—*)B 8y, B =—y 2mn (2.3)
]
_ K 1 1 3\t
o= g V=l tw)
g = (61 _ CZ) (xl - xz)’ n = (Cl - 02) (yl - ,llz)- (2-4)

Here the asterisk sign denotes operation of integral convolution, while the subscripts in (2.4)
indicate the component number of the mixture. Since £ and 1 have different signs, one of series (2.2) or
(2.3) is of constant sign, while the other is of alternating sign. Therefore, we denote the effective moduli
of all-sided compression, calculated in the n-th approximation in the schemes of Voigt and Reuss, by
Kv(n) and KR(n) and we find that

K'= Ky + AKy™ = K™ + AKR®, (2.5)
D n—2
(m) _ K Nl
K™ = B —xms ZO'EK’ (2.6)
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n—%

1 1 1 3 "t <
K™ = <—I?> — Dy <7{— + E> 201 Tij 2.7)

By comparing (2.1) with Eq. (2.6) and (2.7), we obtain

Dy gt

w____ "k ET
AKy™ = KFTps 1—¢° .8
) 5t 1 3N g
AKg™ = K™K Dy <7<‘ + py ‘;]T__“ﬁ (2.9)

Hence we see that for even n the corrections AKV(n) and AKR(n) have the same sign, while for odd n
their signs are opposite. Thus, even approximations for Ky and KR give values that lie on one side
of K*. Contrarily, odd approximations form a range containing the exact value of the effective modulus K*,

3. We now consider the more common case of a mixture of two isotropic components which differ
from one another not only by the volume modulus but also by the shear modulus. Here it is not possible
to find the exact values of the effective elastic moduli. The following results are obtained in the second
approximation:

Dy i = s 2D, K+ 2py
KXy v 5y <K F oy ¢

= D

= G o 3 [ ] o2

KV(Z) — <K> — (3 .1)

In the third approximation of Voigt's scheme the effective tensor of elastic moduli is given by

hinios = Mkl + (MikogGor, g5 hrstoGes, on*Mjnim . (3.3)
Hence
Kv® = Kv® + [Dg®8,48rs -+ (K'*0"> Dpgrs] I i D430,
v = ™ 4 1 [ S + DO Dpgre] T2 D ; 3.4)
where

Py 1 _— —_ —_—
I8 = o § G, sa 061) G, 1 (62) § (O, [ k— ey | |k — K ]y

dkdk,dk,, Dg® = (K%, D@ =3y, (3.5)

Here a bar is used to denote the Fourier integral transformation and & denotes the function describing
the coordinate dependence of the trinary correlation function of the tensor of elastic moduli

<}“iﬂlcl (r) hpq,rs (1'1) knn'tuv (r2)> = <}"iﬂ’tl (I‘),
Mopgrs (2) Mo (£)> @ (¥, Ty, 7o) (3.6)

In (3.5) we have taken into account the quasi homogeneity and isotropy of the space the relation

o(r,ry, ) =@ (r—r | |p—r||rp—r)

holds.
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To determine the sign for the correlative correction of the third order we consider, for the sake of
being definite, the total deviatoric integral convolutions (3.5). The deviatoric contractions of the Fourier
transformed Green functions derivatives give

= = 1
qursDijleip, qukr, s — "g‘ (1 - %)2 + 212 —}—
o (L 1) (85— 1 — d? — 12032), (3.7)

where t =k{k,/kik,, the Fourier transform of the function ¢ {r, ry, ry) for an isotropic medium with de-
terministic boundaries, between parts of inhomogeneities, can be represented in the form [81

= .’ ” - 0Ny y) - 8
PO, K, K7 = o (K) oK) @ (K7, B0 () = i (3.8)

Hence we see that the integrand of the quantity D, Di Ii£  is a positive definite function of its
arguments. At the same time it is shown that the constant D,q, D;jn Iy > 0. Analogously we can show
that the tensorial contractions 8,, 6, Dy I8 and 8,, 6, 8,; 8, I#¢ are positive. Thus, the sign of
correlative correction for the third approximation is determined by the sign of the central moments of the
third order for the elastic moduli K and p.

Let now the inequalities (c;—cy) (K;—Kp) >0 and (e¢1—cy) (1 ~us) >0 be satisfied simultaneously. Then,
taking the central moments of the third order in the form

< K?p > =00 (6 — ¢ Ky — Kp)? (g — W), (3.9)

we find that the correlative additions of the third order to the average moduli K and p are negative;i.e.,

the signs of the correlative corrections in the second and third approximations coincide. Analogously,we
can consider higher approximations of the method, and it can show that the correlative corrections in the

case (cq—cy) (Ky~Ky) >0 and (cy—¢y) (g —1,) >0 are negative.

By the same method we can show that, for the above relations between the concentrations and the
elastic moduli, the expansions of K* and u*, with respect to the correlation function in the scheme of Reuss,
are given by series of alternating signs.

Another approach to determine the range containing the true value of the elastic moduli is based on
variational principles [4]. Such an approach enabled Hashin to establish the following boundaries for
mechanical mixtures:

K, = (K Px K= (K Px
IS oy e S Y R T
D
— - s = R
Py = <) ol Foa T o * M- W exiz + capis + bapa®
0K +8 .
bizm:)—, K> Ky o>l (3.10)

Here, the plus and minus signs denote respectively the upper and lower boundaries of the elastic
moduli. Comparing (3.1) and (3.2) with the boundaries (3.10) of Hashin, we find that for ¢;> ¢, the values
of Kv(z) and uV(Z) are located within the range of Hashin for the concentration of the first component c;=
1—cy, while KR(Z) and uR(Z) lie within it for c;<1~cp. Here cy and cr are given by

1 i
Iy RT T(Fup”
2 M—p - 9 KiK.
yV - ? Kl_‘K‘.’. E] yR - yV’i_G_ Wifts ‘ (3.11)

Since in the case under consideration K;>K,, u;>p,, and c;>c,, averaging in the second approxima-
tion of rundom-function theory gives Ky, 2) 5 K* and Kp 2) s K*, and analogously for u, the elastic moduli K\
and u(z) are located on the right of the exact value of K* and u*. Therefore, if K_(®) <K_, then the right
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boundary of the range can be replaced by its value, where K_(z) is the smaller one of the value of KV(Z)
and KR(Z). For c;<1—cy both values of KV(Q)and KR(Z) lie within the range of Hashin, while for ¢;<1-c_
only K_(Z) lies within this range. Here c4 and c_ are respectively the larger and smaller values of the
quantities cy and cgp. Analogous conclusions hold also for the shear modulus, where the concentrations
cy and cp are determined as before by (3.11).

If Ky>K, and u;> iy, while ¢y<cy, then the quantities K® and 1@ lie on the left of the exact values
for the effective elastic moduli K* and u*. This allows us to improve the left boundary of Hashin. In this
case, for cy;>cy . both Kv(z) and KR(Z) lie within the range of Hashin, while for ¢;>c_ only the larger of
them, K+ @, lies within the range.

As an illustration we consider K=4/3 K, Ky=2, K;=1 and ¢;=0.6. Then cy=c_= 1/3. Hence we find
that Ky =1.6; the range without the correlations taken into account is Kyy ~Kg=0.171; the range of Hashin
is Ky —K_=0.029, and the improved range, with the second approximation of the random-function theory
taken into account, is K_® -Kr_=0.022.

4. We now proceed to consider the elastic moduli of polycrystals. We confine ourselves to the con-
sideration of a cubic system. Then the tensors of elastic moduli and flexibilities of the crystallite in a
crystallographic coordinate system can be written in the form

Miem = MO0y 0m + 2085000 4 AaZ8:01n 018 s 4.1)
Sixlm = 31°6ik§lm + 232961'([5"1”\- —'— 8326in6kn61n6mn . (4: 02)

Here the elastic constants with a single subscript are connected with those having two subscripts by
the relations

0 — 0 — — —
M=y A =y, Ay =y — 0y 2 ¢y

5" = sy, 48" = sy, $3 = Sy~ S19 — Y8y . (4.3)

The second approximation of random-function theory leads to the following expressions for the ef-
fective moduli of all-sided compression and shear [2, 3, 7]:

(3A1 - 8ho) Ag?
1250 O . Dy Dt 4.4

65y - 780) 557 .
Sikl('/zv)t = 8,88, + 252838 — (_'____1____ iklm
25055 (51 -+ 52)

At = MBS + 2Aai1O iy —

(ha =M° 4 Ysha, he = he® 4 Ysha, 1= 51° + Yssa, 5= 52° + s50) . (4.5)

From (4.4) and (4.5) it is seen that

@ — oy — (3hs -+ Bha) As? 1 2.(Bs1 -+ Tso) 542 (4.6)

125 (M + 2he) * e = 45, — 12555 (51 -+ s2)

while the effective volume modulus coincides with the average modulus {13]. In the third approximation,
for Voigt's scheme and from (3.3), we find that

HV(g) = HV(Z) + 1/507"3quilglrs-[krilpsjq- (4°7)
Here the auto-correlation tensor is given by [14]

quiﬁs = 'GOL.S;T (356194‘1?75 + 636ijr86qul - 45Bp;7]:l,s)v (4. 8)
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where 95, ; is the sum of products of the Kronecker 6 symbols with all possible permutations of any 2n
subscripts. The number of terms of such a sum equals 2n—1)1l. By B%jl(ﬁa in (4.8) we have denoted

Bpt;i;s = éijérqukl + 6iréjqukl + é‘isajrqul “F 6j:'6iqukl + éjséirqul + 67'séiquh'l. (409)
To determine the correlative addition sign in (4.7) we consider auto-correlation tensor contractions

with the Fourier transforms of Green function derivatives. Carrying out the calculations, analogously to
that of deriving (3.7), we obtain

firs = — 1 2
Al Bin, oG, = gy [(190— 155w 4 12%) +
A (L= 12) (T2 — 1 — 24®) + 3 (1 — )2 ], (4.10)

. ini
Since 1/4<n =<1, (4.10) is positive definite. Hence it follows that the quantity quﬂfs Irk§2q> 0.
Thus, the sign of the correlative addition in Voigt's scheme is determined by the sign of the elastic con-

stant A5.

From (4.3) it follows that A383< 0. Therefore, the signs of the correlative increments to the moduli
of elasticity and flexibility in the third approximation are opposing one another;i.e. the shear moduli, with
the third order correlation taken into account, form a range containing the exact value of the effective shear
modulus, just as in a mechanical mixture.

From the above analysis it follows that if A;< 0 the effective shear moduli in the second approximation,
uv(z) and pg @) are larger than the exact value u¥ while in the case 23>0 both values py 2 and IR @ are
less than p*.

The results obtained here can be used to establish the boundaries containing the exact value of the
effective shear modulus. For the sake of being definite, let us confine ourselves to A3<0, We then have
the following inequalities:

1
pr<lpF PO gy, pr=g=, v = e (4.11)

Since A3< 0, the inequality up @ . uV(Z) holds, and the right boundary of uy can Je replaced by pp @),

Another method of narrowing the range was worked out by Hashin [5] who obtained the following in-
equalities:

pr < Gy <p* <Gy <y (4.12)

Here the following notations have been used:

G* =G+ 3 _5_ — 4B —1; Go* = Gy —2 i + 68, —1;
Gy — Gy Gs— (1
3(K+26,) o '
b= —sgprTagy s G 7 lnT o)

Gy =y, K=1¢1 + 2c15. (4.13)

*
By a direct calculation we can show that the following inequalities hold: uRp @) <uv<2) G,. Therefore in
the role of the right boundary we must take the value up (2), while G¢* can be taken as the left boundary

GF < p < pg®. (4.14)

Equation (4.14) determines the improved range for the effective shear modulus of polycrystals of
cubic structure. In a contrary case of A;>0, instead of (4.14) we have

py® < p* < Gy (4.15)

For illustration purposes, values of the shear moduli of cubic polycrystals are given in the table.
In the table the values of the elastic constants are taken with accuracy up to three significant digits. The
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Ag Au Cu K Li Mo

¢13 12.40 18.63 16.84 0.458 1.480 ‘ 45.5
c12 9.34 15.68 12,14 0.374 1.250  17.57
ca4 4.61 4.20 7.54 0.263 1.080 |10.99
Up 2.5537 | 2.413%1 | 4.0034 | 0.0846 ; 0.2479 | 12.0135

Gi* | 2.9017 | 2.7206 | 4.5964 | 0.1419 | 0.3614 | 12.0954
p@ | 3.0558 | 2.8534 | 4.8792 | 0.1373 | 0.4945 | 12.0963
p@ | 3.0676 | 2.8573 | 4.9086 | 0.1428 | 0.5387 | 12.0970

Go* 3.0886 | 2.8780 | 4.9445 | 0.1453 | 0.5820 | 12.1034
Wy 3.3780 | 3.1101 | 5.4640 | 0.1747 | 0.6940 | 12.1300

z 21 18 23 32 66 25

values of average and effective elastic moduli are given with accuracy to five significant digits, three of
which correspond to the initial accuracy of the experimental data, while the subsequent two allow us to
calculate, with accuracy up to two significant digits, the absolute values of the differences in the moduli.
In the case ;<0 the difference G*, —G*; gives the range of Hashin, while uR(Z)—G{“ gives the improved
range. In the last row of the table the cguantity z is given, characterizing the narrowing of the range of
Hashin due to the substitution Gz*_’MR(Z . The quantity z is given by

=[G =G 11009, z:<£1*_—‘_0%i_1>100%, (4.16)
ug) — Gt u(‘}) — Gy* )

the first of which refers to the condition A3< 0, while the second refers to Ay3>0, In all cases, with the ex~
ception of molybdenum A;<0 and therefore Gy*>Gy*. For molybdenum G*,< G*;, but for the sake of con-
venience the values G* and G% are written in the table as before in rising order. From the table it is
seen that the method considered here allows us to narrow the Hashin boundaries by several tens of per
cent.
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